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Abstract

The present paper deals with the analysis of the boundary-layer flow of a micropolar fluid on a fixed or continuously moving perme-
able surface. Both parallel and reverse moving surfaces to the free stream are considered. The resulting system of non-linear ordinary
differential equations is solved numerically using the Keller-box method. Numerical results are obtained for the skin friction coefficient
and the local Nusselt number for some values of the parameters, namely the velocity ratio parameter, suction/injection parameter and
material parameter, while the Prandtl number is fixed to be unity. The results indicate that dual solutions exist when the plate and the free
stream move in opposite directions.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The theory of microfluids, as developed by Eringen [1]
has been a field of active research for the last few decades
as this class of fluids represents mathematically many
industrially important fluids, like paints, blood, body flu-
ids, polymers, colloidal fluids and suspension fluids. This
theory takes into account the initial characteristics of the
substructure particles which are allowed to undergo rota-
tion. Micropolar fluids are fluids with microstructure
belonging to a class of fluids with non-symmetrical stress
tensor. Physically, they represent fluids consisting of ran-
domly oriented particles suspended in a viscous medium.
Takhar and Soundalgekar [2] studied the effects of suction
and injection on the flow past a continuously moving semi-
infinite porous plate in a micropolar fluid at rest. In a
recent paper, Ishak et al. [3] analyzed the problem of fluid
flow on a continuously moving plate immersed in a moving
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micropolar fluid, by considering an impermeable plate. The
objective of this study is therefore, to extend the work of
Ishak et al. [3] by considering the effects of suction and
injection on the flow and heat transfer characteristics of a
moving plate in a moving fluid. Both parallel and reverse
moving plates to the free stream are considered. In this
respect, we follow Afzal et al. [4] by employing a composite
velocity instead of considering two cases separately, where
the velocity of the moving plate is greater or less than the
free stream velocity.
2. Problem formulation and basic equations

Consider the steady two-dimensional laminar flow of an
incompressible micropolar fluid due to a moving plate with
a constant velocity Uw in the same or opposite direction to
the mainstream of constant velocity U1. The plate emerges
from the slot of an extrusion die, as shown in Fig. 1. The ori-
gin of the Cartesian coordinate system is placed at the loca-
tion where the plate is drawn into the fluid medium with the
x-axis measured along the plate in the right direction and the
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Nomenclature

A dimensionless constant of integration
Cf skin friction coefficient
f dimensionless stream function
f0 suction/injection parameter
g dimensionless microinertia
h dimensionless angular velocity
j microinertia density
k thermal conductivity
K material parameter
n constant
N angular velocity
Nux local Nusselt number
Pr Prandtl number
qw heat transfer from the plate
Rew local Reynolds number, Uwx/m
Re1 local Reynolds number, U1x/m
T fluid temperature
Tw plate temperature
T1 ambient temperature
u, v velocity components along the x- and y-direc-

tions, respectively
Uw plate velocity
U1 ambient fluid velocity
x, y Cartesian coordinates along the surface and

normal to it, respectively

Greek symbols

a thermal diffusivity
b thermal expansion coefficient
c spin-gradient viscosity
j vortex viscocity
g similarity variable
k velocity ratio parameter, k ¼ Uw=ðU w þ U1Þ
h dimensionless temperature
m kinematic viscosity
l dynamic viscosity
q fluid density
sw skin friction
w stream function

Subscripts

w condition at the wall
1 ambient condition

Superscript
0 differentiation with respect to g

Fig. 1. Physical model and coordinate system.
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y-axis is measured normal to the plate. Neglecting external
body forces and the viscous dissipation effects, the system
of equations governing the problem under consideration,
within the boundary-layer approximations is:
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subject to the boundary conditions:

u¼Uw; v¼ V w; j¼ J w; N ¼�n
ou
oy
; T ¼ T w at y ¼ 0;

u!U1; N ! 0; T ! T1 as y!1:
ð6Þ

Here u and v are the velocity components along the x- and
y-axes, respectively, N is the angular velocity or microrota-
tion whose direction of rotation is in the x–y plane, T, Tw,
T1, q, l, j, c, m, j and a are the fluid temperature, plate
temperature, ambient fluid temperature, fluid density, dy-
namic viscosity, vortex viscosity, spin-gradient viscosity,
kinematic viscosity, microinertia density and thermal diffu-
sivity, respectively. Further, Vw(x) < 0 and Vw(x) > 0 are
for mass suction and mass injection, respectively. We no-
tice that n is a constant such that 0 6 n 6 1, where the case
n = 0 is called strong concentration by Guram and Smith
[5], indicates N = 0 near the wall and represents concen-
trated particle flows in which the microelements close to
the wall surface are unable to rotate (Jena and Mathur
[6]). The case n = 1/2 indicates the vanishing of anti-sym-
metrical part of the stress tensor and denotes weak concen-
tration (Ahmadi [7]). The case n = 1, as suggested by
Peddieson [8], is used for the modeling of turbulent bound-
ary-layer flows. However, we shall consider here only the
case of weak concentration of particles at the plate
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(n = 1/2). In order that similarity solutions of Eqs. (1)–(5)
subject to the boundary conditions (6) exist, we take:

J wðxÞ ¼ ax; V wðxÞ ¼ �
mðU w þ U1Þ

2x

� �1=2

f0; ð7Þ

where a and f0 are constants. We notice that f0 determines
the transpiration rate at the surface, with f0 > 0 for suction,
f0 < 0 for blowing or injection, and f0 = 0 corresponds to
an impermeable plate.

We follow the work of many recent authors by assuming
that c is given by (cf. Ahmadi [7] or Kline [9]):

c ¼ ðlþ j=2Þj ¼ lð1þ K=2Þj; ð8Þ

where K = j/l denotes the dimensionless viscosity ratio
and K is called the material parameter. This assumption
is invoked to allow the field of equations predicts the cor-
rect behavior in the limiting case when the microstructure
effects become negligible and the total spin N reduces to
the angular velocity. Eq. (8) also has been used by Gorla
[10] and Ishak et al. [11] to study different problems of con-
vective flow of micropolar fluids. It is stated by Ahmadi [7]
that for non-constant microinertia it is possible using Eq.
(8) to find similar and self-similar solutions for a large
number of problems of micropolar fluids. It is also worth
mentioning that the case K = 0 describes the classical Na-
vier–Stokes equations for a viscous and incompressible
fluid.

We introduce now the following similarity variables:
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where w is the stream function defined in the usual way as
u ¼ ow=oy and v ¼ �ow=ox so as to identically satisfy Eq.
(1). Substituting variables (9) into Eqs. (2)–(5), we obtain
the following ordinary differential equations:

ð1þ KÞf 000 þ ff 00 þ Kh0 ¼ 0; ð10Þ
ð1þ K=2Þðgh0Þ0 þ gðfhÞ0 � Kð2hþ f 00Þ ¼ 0; ð11Þ
2gf 0 � fg0 ¼ 0; ð12Þ
h00 þ Prf h0 ¼ 0; ð13Þ

and the boundary conditions (6) becomes:

f ð0Þ ¼ f0; gð0Þ ¼ g0; f 0ð0Þ ¼ k;

hð0Þ ¼ �nf 00ð0Þ; hð0Þ ¼ 1;

f 0ð1Þ ! 1� k; hð1Þ ! 0; hð1Þ ! 0;

ð14Þ

where g0 is a constant, Pr is the Prandtl number and k is the
velocity ratio parameter defined as:
k ¼ Uw

U w þ U1
; ð15Þ

with Uw þ U1 6¼ 0. We notice that k = 0 and 1 correspond
to a fixed plate in a moving fluid and a moving plate in a
quiescent fluid, respectively. The case 0 < k < 1 is when
the plate and the fluid move in the same direction. If
k < 0, the free stream is directed towards the positive
x-direction, while the plate moves towards the negative
x-direction. If k > 1, the free stream is directed towards
the negative x-direction, while the plate moves towards
the positive x-direction. However, in this paper we consider
only the case of k 6 1, i.e. the direction of the free stream is
fixed (towards the positive x-direction).

The solution of Eq. (12) satisfying the boundary condi-
tions (14) is given by:

g ¼ Af 2; ð16Þ

where A is a dimensionless constant of integration. If
K 6¼ 0, but A = 0, from Eq. (11), we get:

h ¼ � 1

2
f 00; ð17Þ

that is the gyration is identical to the angular velocity.
Using relation (17), Eq. (10) becomes:

ð1þ K=2Þf 000 þ ff 00 ¼ 0; ð18Þ

which can be reduced to the Blasius equation with a simple
change of the dependent variables.

The physical quantities of interest are the skin friction
coefficient and the local Nusselt number, which are defined
as:

Cf ¼
sw

qðUw þ U1Þ2=2
; Nux ¼

xqw

kðT w � T1Þ
; ð19Þ

where the skin friction sw and the heat transfer from the
plate qw are given by:
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Using the similarity variables (9), we get:

1

2
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2
p ð1þ K=2Þf 00ð0Þ;

Nux=ðRew þ Re1Þ1=2 ¼ � 1ffiffiffi
2
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where Rew ¼ U wx=m and Re1 ¼ U1x=m are the local Rey-
nolds numbers.

3. Results and discussion

The non-linear ordinary differential equations (10), (11),
(13) and (16), satisfying the boundary conditions (14) are
solved numerically using the Keller-box method for several
values of the parameters, namely the material parameter K,
velocity ratio parameter k and suction/injection parameter
f0, while the Prandtl number Pr = 1, the constant A = 1



Table 1
Values of f 00ð0Þ=

ffiffiffi
2
p

when K = 0 and f0 = 0

k Blasius
[12]

Howarth
[13]

Sakiadis
[14]

Cortell
[15]

Present
results

0 0.332 0.33206 0.33206 0.3321
0.5 0
1 �0.44375 �0.4438
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and n = 1/2 (weak concentration of fluid particles at the
plate). The numerical results compared well with those
obtained by previous investigations, as shown in Table 1.

The variations of the skin friction coefficient f00(0) and
the local Nusselt number �h0(0) as a function of k for var-
ious values of the material parameter K are shown in Figs.
2 and 3, respectively. It is evident that, in each figure, all
curves intersect at a point where k = 0.5; that is when the
plate and the fluid move with the same velocity. In this
case, f 00(0) = 0 since the skin friction sw = 0, but
�h0ð0Þ ¼ 0:5641 6¼ 0 which implies that the heat transfer
still occurs from the plate to the fluid even when they are
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Fig. 2. Skin friction coefficient f00(0) as a function of k for various values of
K when f0 = 0.
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Fig. 3. Local Nusselt number �h0(0) as a function of k for various values
of K when f0 = 0.
moving with the same velocity. This is because the plate
and the fluid are at different temperature. The zero skin
friction in this case does not mean separation. The values
of f 00(0) are positives when k < 0.5, while they are negatives
when k > 0.5. Physically, positive sign of f 00(0) implies that
the fluid exerts a drag force on the plate and negative sign
implies the opposite. Moreover, the absolute value of f 00(0)
decreases when K increases. Thus, micropolar fluids show
drag reduction compared to Newtonian fluids.

Figs. 4 and 5 present the effect of suction/injection
parameter f0 on the skin friction coefficient f 00(0) when
K = 1, and the local Nusselt number �h0(0) when Pr = 1
and K = 1. We notice that the Prandtl number Pr gives
no effect to the skin friction coefficient, as can be seen from
Eqs. (10)–(13). As expected, the absolute value of f00(0) is
larger for suction compared to injection. The similar trend
is observed for the effect of f0 on the local Nusselt number.
Thus, injection can be introduced to reduce the drag force
and in consequence reduces the heat transfer rate at the
surface. Fig. 4 also shows that the skin friction is zero when
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Fig. 4. Skin friction coefficient f00(0) as a function of k for various values of
f0 when K = 1.
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Fig. 5. Local Nusselt number �h0(0) as a function of k for various values
of f0 when K = 1.
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the plate and the fluid move with the same velocity, a con-
sistent result with those stated above.

Figs. 2–5 show the existence of dual solutions when
k < 0. The solution for a particular value of K or f0 exists
up to a critical value of k (kc say). Beyond this value, the
boundary-layer separates from the surface, thus we are
unable to get the solution using the boundary-layer
approximations. To obtain further solution, the full
Navier–Stokes equations have to be used. It is evident from
these figures that larger values of K or f0 delay the bound-
ary-layer separation. Thus, the boundary-layer separation
is delayed for micropolar fluid or by introducing suction.
The curve bifurcates at k = kc, and the lower branch solu-
tion continues further and terminates at (0, 0) for both f 00(0)
and �h0(0). The samples of velocity, microrotation (angu-
lar velocity) and temperature profiles which show the exis-
tence of dual solutions, are given in Figs. 6–8, respectively.
As can be seen from Fig. 7, the lower branch solution is
unstable and does not correspond to a physically realizable
situation. However, the results (lower branches) are of
interest in so far as the differential equations are concerned,
since they may appear in other situations where the corre-
sponding solutions could have more realistic meaning (see
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Fig. 6. Velocity profiles for K = 1, f0 = 0.5 and k = �1.
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Fig. 7. Angular velocity profiles for K = 1, f0 = 0.5 and k = �1.
Merkin and Ingham [16] and Ridha [17]). The existence of
dual solutions in the neighborhood of the separation region
gives an early sign that the flow is unstable and in transi-
tion to become turbulent.

4. Conclusions

In this paper, we have theoretically studied the problem
of steady boundary-layer flow of a micropolar fluid on a
continuously moving or fixed permeable surface. The gov-
erning boundary-layer equations have been solved numeri-
cally using the Keller-box method. The numerical results for
the skin friction coefficient and the local Nusselt number
have been obtained and illustrated in graphs. A discussion
of the effect of material parameter K, velocity ratio param-
eter k and suction/injection parameter f0, while the Prandtl
number Pr = 1, on the skin friction and heat transfer rate at
the surface in the case of weak concentration particles at the
plate (n = 1/2) has been done. It has been demonstrated
that dual solutions exist when the plate and the free stream
move in the opposite directions. Moreover, micropolar flu-
ids show drag reduction characteristic compared to classical
Newtonian fluids, and the boundary-layer separation is
delayed for micropolar fluids or by introducing suction.
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